首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3771篇
  免费   327篇
  国内免费   240篇
  2023年   153篇
  2022年   143篇
  2021年   268篇
  2020年   184篇
  2019年   224篇
  2018年   192篇
  2017年   146篇
  2016年   147篇
  2015年   211篇
  2014年   219篇
  2013年   272篇
  2012年   181篇
  2011年   159篇
  2010年   141篇
  2009年   180篇
  2008年   185篇
  2007年   182篇
  2006年   167篇
  2005年   135篇
  2004年   118篇
  2003年   100篇
  2002年   73篇
  2001年   56篇
  2000年   36篇
  1999年   36篇
  1998年   27篇
  1997年   28篇
  1996年   41篇
  1995年   25篇
  1994年   22篇
  1993年   22篇
  1992年   26篇
  1991年   19篇
  1990年   16篇
  1989年   16篇
  1988年   14篇
  1987年   7篇
  1985年   14篇
  1984年   10篇
  1983年   9篇
  1982年   19篇
  1981年   12篇
  1980年   6篇
  1979年   14篇
  1978年   13篇
  1977年   7篇
  1976年   11篇
  1975年   15篇
  1974年   9篇
  1973年   10篇
排序方式: 共有4338条查询结果,搜索用时 15 毫秒
101.
The Ptr1 (Pseudomonas tomato race 1) locus in Solanum lycopersicoides confers resistance to strains of Pseudomonas syringae pv. tomato expressing AvrRpt2 and Ralstonia pseudosolanacearum expressing RipBN. Here we describe the identification and phylogenetic analysis of the Ptr1 gene. A single recombinant among 585 F2 plants segregating for the Ptr1 locus was discovered that narrowed the Ptr1 candidates to eight nucleotide‐binding leucine‐rich repeat protein (NLR)‐encoding genes. From analysis of the gene models in the S. lycopersicoides genome sequence and RNA‐Seq data, two of the eight genes emerged as the strongest candidates for Ptr1. One of these two candidates was found to encode Ptr1 based on its ability to mediate recognition of AvrRpt2 and RipBN when it was transiently expressed with these effectors in leaves of Nicotiana glutinosa. The ortholog of Ptr1 in tomato and in Solanum pennellii is a pseudogene. However, a functional Ptr1 ortholog exists in Nicotiana benthamiana and potato, and both mediate recognition of AvrRpt2 and RipBN. In apple and Arabidopsis, recognition of AvrRpt2 is mediated by the Mr5 and RPS2 proteins, respectively. Phylogenetic analysis places Ptr1 in a distinct clade compared with Mr5 and RPS2, and it therefore appears to have arisen by convergent evolution for recognition of AvrRpt2.  相似文献   
102.
目的探讨粪菌移植(fecal microbiota transplantation,FMT)对非酒精性脂肪性肝病(nonalcoholic fatty liver disease,NAFLD)大鼠肠黏膜屏障的保护作用。方法健康雄性SD大鼠30只,随机分为3组:正常对照组(control group,C组)10只,予正常饮食;高脂模型组(model group,M组)10只、粪菌移植治疗组(treatment group,T组)10只,M组和T组均予高脂饮食。T组予粪菌液灌胃2 mL/次,隔日1次,粪菌液灌胃的前一天晚上及当天早上均予奥美拉唑镁肠溶片灌胃;C组及M组同时予奥美拉唑及生理盐水灌胃。喂养12周后实验结束,测定血中TG、ALT、AST水平;苏丹黑B染色观察肝脏病理学变化;取回肠末端肠组织行HE染色及扫描电镜观察肠黏膜结构变化。结果与M组大鼠相比,T组血清TG、ALT、AST水平降低,差异有统计学意义(均P0.05)。T组大鼠肝脏苏丹黑B染色可见肝细胞内脂肪沉积明显减少,脂肪变性程度较M组减轻。T组大鼠肠组织HE染色肠绒毛轻度水肿,排列较整齐、紧密。扫描电镜中可见T组大鼠肠绒毛形态较饱满,排列比较紧密,微绒毛之间的间隙变小。结论粪菌移植能改善肝功能,减轻肝脏脂肪变,降低肠道通透性,改善肠黏膜屏障功能。  相似文献   
103.
目的研究儿童反复呼吸道感染与患儿肠道微生态平衡紊乱的关系。方法选择102例反复呼吸道感染患儿为研究组,167例急性肺炎患儿为肺炎对照组,142例健康体检儿童为正常对照组。采用16S rRNA荧光定量PCR检测3组对象肠道双歧杆菌及大肠埃希菌数量,计算B/E值,并比较3组研究对象细胞免疫功能。结果正常对照组、肺炎对照组以及研究组儿童肠道双歧杆菌数量依次降低,大肠埃希菌依次增多,B/E值依次降低,差异均有统计学意义(均P0.05)。正常对照组、肺炎对照组以及研究组儿童血液中CD3~+、CD4~+细胞水平以及CD4~+/CD8~+依次降低,CD8~+细胞水平依次增高,差异均有统计学意义(均P0.05)。结论儿童反复呼吸道感染与肠道微生态失衡具有一定相关性,肠道微生态稳态的维持可为反复呼吸道感染的防治提供新思路。  相似文献   
104.
目的探讨微生态制剂在早期结直肠癌(CRC)根治术后的作用,并为此类患者提供一种术后康复支持疗法。方法选取2017年6月-2019年6月于本院接受早期CRC根治术术后97例患者作为研究对象,采用随机数字表分为观察组50例和对照组47例。两组术后均接受常规治疗,观察组在对照组基础上接受双歧杆菌三联活菌胶囊治疗,比较两组治疗前后细胞免疫指标、肠道微生态复杂度及属水平相对丰度、肠道菌群OTU数量、肠道黏膜屏障功能。结果治疗后观察组NK细胞、CD3~+T、CD4~+T、CD4~+/CD8~+T均提高(P0.05),观察组CD8~+T治疗前后相近(P0.05);治疗后对照组上述指标与治疗前差异均无统计学意义(P0.05),观察组NK细胞、CD3~+T、CD4~+T、CD4~+/CD8~+T均高于对照组(P0.05);治疗后观察组Chao1指数、Shannon指数、肠道菌群OTU数均升高(P0.05),对照组Chao1指数、Shannon指数、肠道菌群OTU数量治疗前后差异均无统计学意义(P0.05);治疗后观察组Chao1指数、Shannon指数、肠道菌群OTU数量均高于对照组(P0.05);治疗后观察组大肠杆菌、肠球菌、葡萄球菌属水平相对丰度均下降(P0.05),对照组均升高(P0.05),且观察组均低于对照组(P0.05);治疗后观察组乳杆菌、双歧杆菌、梭菌、类杆菌、链球菌属水平相对丰度均升高(P0.05),对照组均下降(P0.05),且观察组均高于对照组(P0.05);治疗后观察组血浆D-乳酸、DAO、I-FABP、内毒素水平分别为(6.94±1.23)mg/L、(3.45±0.65)U/L、(43.95±7.99)μg/L、(4.48±0.85)U/L,均较治疗前下降(P0.05),对照组各项指标水平分别为(15.59±2.79)mg/L、(7.74±1.35)U/L、(74.21±13.82)μg/L、(8.68±1.65)U/L,均较治疗前升高(P0.05),治疗后观察组血浆D-乳酸、DAO、I-FABP、内毒素水平均降低(P0.05)。结论微生态制剂可有效改善早期CRC患者根治术后的细胞免疫水平,有效纠正早期CRC术后患者肠道菌群失调,增强早期CRC根治术后患者肠黏膜屏障功能。  相似文献   
105.
106.
细菌和古菌等微生物与病毒(噬菌体)之间的生存之战是一场“军备竞赛”。细菌和古菌已经进化出多种先天和适应性的免疫系统来抵御噬菌体的入侵。噬菌体则利用不同的对抗策略来躲避这些噬菌体防御机制。CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated)系统就是细菌和古菌广泛编码的一种抵御噬菌体等外源遗传元件的获得性免疫系统,与此同时,噬菌体也进化出特异性的anti-CRISPR来抵抗CRISPR-Cas系统的免疫。本文系统综述了anti-CRISPR的发现过程、分类和作用机制,并展望了其潜在的应用。  相似文献   
107.
曾珠 《生物工程学报》2021,37(7):2272-2282
乳酸菌是被公认为安全的食品级微生物,广泛地应用于食品生产、保存以及作为益生菌促进人类健康。鉴于发展有效的投递药物分子策略的需要,乳酸菌成为了极有吸引力的用于口服、鼻饲及阴道进行粘膜投递药物分子的活载体。用乳酸菌作为药物分子的投递载体,安全性好,且可直接合成并投递目标蛋白,显著降低药物生产成本。到目前为止,乳酸菌作为粘膜投递载体,已成功地向粘膜组织投递了一系列功能蛋白用以治疗多种疾病。文中综述了近20年的数据,重点聚焦乳酸菌作为药物分子投递载体的发展和应用,为今后乳酸菌作为活载体的临床研究提供一定参考。  相似文献   
108.
Mycobacterium tuberculosis (Mtb) infection is among top ten causes of death worldwide, and the number of drug-resistant strains is increasing. The direct interception of human immune signaling molecules by Mtb remains elusive, limiting drug discovery. Oxysterols and secosteroids regulate both innate and adaptive immune responses. Here we report a functional, structural, and bioinformatics study of Mtb enzymes initiating cholesterol catabolism and demonstrated their interrelation with human immunity. We show that these enzymes metabolize human immune oxysterol messengers. Rv2266 – the most potent among them – can also metabolize vitamin D3 (VD3) derivatives. High-resolution structures show common patterns of sterols binding and reveal a site for oxidative attack during catalysis. Finally, we designed a compound that binds and inhibits three studied proteins. The compound shows activity against Mtb H37Rv residing in macrophages. Our findings contribute to molecular understanding of suppression of immunity and suggest that Mtb has its own transformation system resembling the human phase I drug-metabolizing system.  相似文献   
109.
Immune recognition in plants is governed by two major classes of receptors: pattern recognition receptors (PRRs) and nucleotide-binding leucine-rich repeat receptors (NLRs). Located at the cell surface, PRRs bind extracellular ligands originating from microbes (indicative of “non-self”) or damaged plant cells (indicative of “infected-self”), and trigger signaling cascades to protect against infection. Located intracellularly, NLRs sense pathogen-induced physiological changes and trigger localized cell death and systemic resistance. Immune responses are under tight regulation in order to maintain homeostasis and promote plant health. In a forward-genetic screen to identify regulators of PRR-mediated immune signaling, we identified a novel allele of the membrane-attack complex and perforin (MACPF)-motif containing protein CONSTITUTIVE ACTIVE DEFENSE 1 (CAD1) resulting from a missense mutation in a conserved N-terminal cysteine. We show that cad1-5 mutants display deregulated immune signaling and symptoms of autoimmunity dependent on the lipase-like protein ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), suggesting that CAD1 integrity is monitored by the plant immune system. We further demonstrate that CAD1 localizes to both the cytosol and plasma membrane using confocal microscopy and subcellular fractionation. Our results offer new insights into immune homeostasis and provide tools to further decipher the intriguing role of MACPF proteins in plants.  相似文献   
110.
Toll‐like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle‐associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site‐specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site‐specific TLR4 expression in inflammation and disease, particularly the impact of epithelial‐specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell‐specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site‐specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号